當前位置:生活科普幫 >

休閒 >世界之最 >

引力最強的星體 黑洞吞噬鄰近宇宙區域的所有光線和任何物質

引力最強的星體 黑洞吞噬鄰近宇宙區域的所有光線和任何物質

引力最強的星體是黑洞。黑洞是現代廣義相對論中,宇宙空間記憶體在的一種天體。黑洞的引力很大,使得視界內的逃逸速度大於光速。1916年,德國天文學家卡爾·史瓦西(KarlSchwarzschild)通過計算得到了愛因斯坦引力場方程的一個真空解,這個解表明,如果將大量物質集中於空間一點,其周圍會產生奇異的現象,即在質點周圍存在一個介面——“視界”一旦進入這個介面,即使光也無法逃脫。這種“不可思議的天體”被美國物理學家約翰·阿奇博爾德·惠勒(JohnArchibaldWheeler)命名為“黑洞”。下面就跟本站一起具體看看引力最強的星體等相關內容。

引力最強的星體 黑洞吞噬鄰近宇宙區域的所有光線和任何物質

演化過程

黑洞就是中心的一個密度無限大、時空曲率無限高、體積無限小,熱量無限大的奇點和周圍一部分空空如也的天區,這個天區範圍之內不可見。依據阿爾伯特-愛因斯坦的相對論,當一顆垂死恆星崩潰,它將聚集成一點,這裡將成為黑洞,吞噬鄰近宇宙區域的所有光線和任何物質。

黑洞的產生過程類似於中子星的產生過程:某一個恆星在準備滅亡,核心在自身重力的作用下迅速地收縮,塌陷,發生強力爆炸。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,連中子間的排斥力也無法阻擋。中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想象的物質。由於高質量而產生的引力,使得任何靠近它的物體都會被它吸進去。

也可以簡單理解為:通常恆星最初只含氫元素,恆星內部的氫原子核時刻相互碰撞,發生聚變。由於恆星質量很大,聚變產生的能量與恆星萬有引力抗衡,以維持恆星結構的穩定。由於氫原子核的聚變產生新的元素——氦元素,接著,氦原子也參與聚變,改變結構,生成鋰元素。如此類推,按照元素週期表的順序,會依次有鈹元素、硼元素、碳元素、氮元素等生成,直至鐵元素生成,該恆星便會坍塌。這是由於鐵元素相當穩定,參與聚變時釋放的能量小於所需能量,因而聚變停止,而鐵元素存在於恆星內部,導致恆星內部不具有足夠的能量與質量巨大的恆星的萬有引力抗衡,從而引發恆星坍塌,最終形成黑洞。說它“黑”,是因為它產生的引力使得它周圍的光都無法逃逸。跟中子星一樣,黑洞也是由質量大於太陽質量好幾十甚至幾百倍以上的恆星演化而來的。

引力最強的星體 黑洞吞噬鄰近宇宙區域的所有光線和任何物質 第2張

當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料,由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,物質將不可阻擋地向著中心點進軍,直到最後形成體積接近無限小、密度幾乎無限大的星體。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),質量導致的時空扭曲就使得即使光也無法向外射出——“黑洞”就誕生了。

吸積

黑洞通常是因為它們聚攏周圍的氣體產生輻射而被發現的,這一過程被稱為吸積。高溫氣體輻射熱能的效率會嚴重影響吸積流的幾何與動力學特性。已觀測到了輻射效率較高的薄盤以及輻射效率較低的厚盤。當吸積氣體接近中央黑洞時,它們產生的輻射對黑洞的自轉以是中央延展物質系統的流動。吸積是天體物理中最普遍的過程之一,而且也正是因為吸積才形成了我們周圍許多常見的結構。在宇宙早期,當氣體朝由暗物質造成的引力勢阱中心流動時形成了星系。即使到了今天,恆星依然是由氣體雲在其自身引力作用下坍縮碎裂,進而通過吸積周圍氣體而形成的。行星(包括地球)也是在新形成的恆星周圍通過氣體和岩石的聚集而形成的。當中央天體是一個黑洞時,吸積就會展現出它最為壯觀的一面。黑洞除了吸積物質之外,還通過霍金蒸發過程向外輻射粒子。

蒸發

由於黑洞的密度極大,根據公式我們可以知道密度=質量/體積,為了讓黑洞密度無限大,而黑洞的質量不變,那就說明黑洞的體積要無限小,這樣才能成為黑洞。黑洞是由一些恆星“滅亡”後所形成的死星,它的質量極大,體積極小。但黑洞也有滅亡的那天,按照霍金的理論,在量子物理中,有一種名為“隧道效應”的現象,即一個粒子的場強分佈雖然儘可能讓能量低的地方較強,但即使在能量相當高的地方,場強仍會有分佈,對於黑洞的邊界來說,這就是一堵能量相當高的勢壘,但是粒子仍有可能出去。

霍金還證明,每個黑洞都有一定的溫度,而且溫度的高低與黑洞的質量成反比例。也就是說,大黑洞溫度低,蒸發也微弱;小黑洞的溫度高蒸發也強烈,類似劇烈的爆發。相當於一個太陽質量的黑洞,大約要1x10^66年才能蒸發殆盡;相當於一顆小行星質量的黑洞會在1x10-21秒內蒸發得乾乾淨淨。

毀滅

黑洞會發出耀眼的光芒,體積會縮小,甚至會爆炸,會噴射物體,發出耀眼的光芒。當英國物理學家斯蒂芬·威廉·霍金於1974年做此預言時,整個科學界為之震動。

霍金的理論是受靈感支配的思維的飛躍,他結合了廣義相對論和量子理論,他發現黑洞周圍的引力場釋放出能量,同時消耗黑洞的能量和質量。

假設一對粒子會在任何時刻、任何地點被創生,被創生的粒子就是正粒子與反粒子,而如果這一創生過程發生在黑洞附近的話就會有兩種情況發生:兩粒子湮滅、一個粒子被吸入黑洞。“一個粒子被吸入黑洞”這一情況:在黑洞附近創生的一對粒子其中一個反粒子會被吸入黑洞,而正粒子會逃逸,由於能量不能憑空創生,我們設反粒子攜帶負能量,正粒子攜帶正能量,而反粒子的所有運動過程可以視為是一個正粒子的為之相反的運動過程,如一個反粒子被吸入黑洞可視為一個正粒子從黑洞逃逸。這一情況就是一個攜帶著從黑洞裡來的正能量的粒子逃逸了,即黑洞的總能量少了,而愛因斯坦的質能方程E=mc2表明,能量的損失會導致質量的損失。

當黑洞的質量越來越小時,它的溫度會越來越高。這樣,當黑洞損失質量時,它的溫度和發射率增加,因而它的質量損失得更快。這種“霍金輻射”對大多數黑洞來說可以忽略不計,因為大黑洞輻射的比較慢,而小黑洞則以極高的速度輻射能量,直到黑洞的爆炸。

表現形式

據英國媒體報道,一項新的理論指出黑洞的死亡方式可能是以轉變為白洞的方式進行的。理論上來說,白洞在行為上恰好是黑洞的反面——黑洞不斷吞噬物質,而白洞則不斷向外噴射物質。這一發現最早是由英國某雜誌網站報道的,其理論依據是晦澀的量子引力理論。

恆星的時空扭曲改變了光線的路徑,使之和原先沒有恆星情況下的路徑不一樣。光在恆星表面附近稍微向內偏折,在日食時觀察遠處恆星發出的光線,可以看到這種偏折現象。當該恆星向內坍塌時,其質量導致的時空扭曲變得很強,光線向內偏折得也更強,從而使得光子從恆星逃逸變得更為困難。對於在遠處的觀察者而言,光線變得更黯淡更紅。最後,當這恆星收縮到某一臨界半徑(史瓦西半徑)時,其質量導致時空扭曲變得如此之強,使得光向內偏折得也如此之強,以至於光也逃逸不出去。這樣,如果光都逃逸不出來,其他東西更不可能逃逸,都會被拉回去。也就是說,存在一個事件的集合或時空區域,光或任何東西都不可能從該區域逃逸而到達遠處的觀察者,這樣的區域稱作黑洞。將其邊界稱作事件視界,它和剛好不能從黑洞逃逸的光線的軌跡相重合。

與別的天體相比,黑洞十分特殊。人們無法直接觀察到它,科學家也只能對它內部結構提出各種猜想。而使得黑洞把自己隱藏起來的的原因即是彎曲的時空。根據廣義相對論,時空會在引力場作用下彎曲。這時候,光雖然仍然沿任意兩點間的最短光程傳播,但相對而言它已彎曲。在經過大密度的天體時,時空會彎曲,光也就偏離了原來的方向。

在地球上,由於引力場作用很小,時空的扭曲是微乎其微的。而在黑洞周圍,時空的這種變形非常大。這樣,即使是被黑洞擋著的恆星發出的光,雖然有一部分會落入黑洞中消失,可另一部分光線會通過彎曲的空間中繞過黑洞而到達地球。觀察到黑洞背面的星空,就像黑洞不存在一樣,這就是黑洞的隱身術。

更有趣的是,有些恆星不僅是朝著地球發出的光能直接到達地球,它朝其它方向發射的光也可能被附近的黑洞的強引力折射而能到達地球。這樣我們不僅能看見這顆恆星的“臉”,還同時看到它的“側面”、甚至“後背”,這是宇宙中的“引力透鏡”效應。

這張紅外波段影象拍攝的是我們所居住銀河系的中心部位,所有銀河系的恆星都圍繞銀心部位可能存在的一個超大質量黑洞公轉。據美國太空網報道,一項新的研究顯示,宇宙中最大質量的黑洞開始快速成長的時期可能比科學家原先的估計更早,並且仍在加速成長。

一個來自以色列特拉維夫大學的天文學家小組發現,宇宙中最大質量黑洞的首次快速成長期出現在宇宙年齡約為12億年時,而非之前認為的20~40億年。天文學家們估計宇宙的年齡約為138.2億年。

同時,這項研究還發現宇宙中最古老、質量最大的黑洞同樣具有非常快速的成長。有關這一發現的詳細情況發表在《天體物理學報》雜誌上。

引力最強的星體 黑洞吞噬鄰近宇宙區域的所有光線和任何物質 第3張

如果黑洞足夠大,宇航員會開始覺察到拉著他腳的重力比拉著他頭的重力更強大,這種吸引力拖著他無情地向下落,重力差會迅速加大而將他撕裂(拉伸線),最終他的遺體會被分解而落入黑洞那無限緻密核心。

普金斯基和他的兩個學生艾哈邁德·艾姆哈里、詹姆斯·薩利,加上該校的另一位弦理論學家唐納德·馬洛夫一起,對這一事件進行了重新計算。根據他們的計算,卻呈現出完全不同的另一番場景:量子效應會把事件視界變成沸騰的粒子大漩渦,任何東西掉進去都會撞到一面火焰牆上而被瞬間烤焦。

美國宇航局有關一個超大質量黑洞及其周圍物質盤,炙熱的物質團(一個呈粉紅色,一個呈黃色)每一個的體積都與太陽相當,環繞距離黑洞較近的軌道執行。科學家認為所有大型星系中心都存在超大質量黑洞。黑洞一直在吞噬被稱之為“活躍星系核”的物質。由於被明亮並且溫度極高的下落物質盤環繞,黑洞的質量很難確定。根據刊登在《自然》雜誌上的一篇研究論文,基於對繞黑洞執行物質旋轉速度的計算結果,37個已知星系中心黑洞的質量實際上低於此前的預計。

質疑是否存在

一位美國理論物理學家經過數學計算得出結論——黑洞根本就不存在。相關論文分別發表在著名的預印本網站ArXiv和《物理快報B》雜誌上。

“得出這個結論後,即便我本人都感到十分震撼。”提出這一理論的美國北卡羅來納大學教堂山分校理論物理學教授勞拉·梅爾西尼—霍頓這樣描述自己的感受。她說:“科學家們研究這個問題已經超過了50年,而這個解決方案給了我們許多新的思考。”

  • 文章版權屬於文章作者所有,轉載請註明 https://shkpb.com/xiuxian/shijie/glvmwp.html